我们知道在数字信号的采样中,如果采样评论不当,就可能会发生信号混叠(Aliasing)的现象导致信号失真。根据采样定理(Nyquist Theorem),为了避免发生信号混叠,采样频率必须为信号最高频率的两倍以上。除此之外,我们有以下两个定义:
-
混叠频率(Alias Frequency): 混叠频率的值为$abs($Signal Frequency $-$ Closest Integer Multiple of Sampling Frequency$)$。用严谨一些的表示方式即为: $$ f_a=\left|f-\frac{(k+1)f_s}{2}\right| \quad \textrm{where} \quad \frac{kf_s}{2} \leq f \leq \frac{(k+2)f_s}{2} $$ 其中$f_a$表示混淆频率,$f$表示信号频率,$f_s$表示采样频率,$k$表示一个奇数。
-
折叠频率(Folding Frequency): 折叠频率的值为采样频率的一半,频率高于折叠频率的信号经过采样后可能会发生信号混叠。
在下方输入信号频率和采样频率计算混叠频率与折叠频率。
在手机上阅读或分享本文请扫描以下二维码:
Comments